Internetworking Seminar

Modem, DSL and Powerline technologies

Jochen Eppler Sebastian Zuther Nils Zweiling

Overview

- Modem technology
- DSL technologies
- Powerline networks

Modem technology

Modem technology

- modem stands for modulate/demodulate
- used to communicate data over the PSTN
- the first modem was invented in the 1950's
- the first commercial modem was manufactured by AT&T in 1962
- the "Bell 103": full-duplex operation, frequency shift keying, 300 baud
- baud means "bits per second"

Modulation/Demodulation techniques

- Frequency Shift Keying (FSK)
- FSK is the frequency modulation of a carrier to represent digital data
- Simplex of Half Duplex Operation
 - carrier signal frequency: 1170 Hz
 - 1 is represented by 1270 Hz
 - 0 is represented by 1070 Hz
- for Full Duplex a second carrier has to be used

Full Duplex example

- what is the maximum baudrate for FSK?
- bauds = bits per second
- 2400 bauds: at least 2400 Hz
- the usable bandwidth for telephone lines is 0–3400 Hz
- full-duplex operation needs two carriers
- the physical limit is reached
- what is the way out?

- Quadrature Phase Shifted Keying (QPSK)
- carrier frequency at 600 baud + encoding technique
 - Bits to send Phase Shift 01 0° 00 90° 10 180° 11 270°

- every change in the baud rate (phase shift) decodes 2 bits
- 2 bits * 600 baud = 1200 bps

example of Carrier Phase Modulation

data transmitted: 10011100

- the datarate can be increased by:
 - using more phase angles
 - modulating the amplitude
- example: 16-QAM
- 12 phase angles, 4 of them with 2 amplitude values, gives 16 values (4 bit)
- calculation for 16-QAM:
 - 4 bits * 2400 baud = 9600 bps Modems

- now we understand the basic modulation/demodulation techniques
- these are used in all common types of modems (DSL-, Powerline-, Cable-, ...-Modems)
- only differs in frequencies and channel count

- how can we separate the frequencies?
- 2 frequencies can be seperated with a low/high-pass filter
- we will see a high-pass filter in our demonstration
- 3 or more frequencies can be separated by using bandwidth filters

DSL technologies

DSL technologies

- What is DSL?
- Different types of xDSL
- How does DSL work?
- Specifications of different xDSL-types
- Prices
- Experiments

What is DSL?

Means: Digital Subscriber Line

- Uses ordinary copper telephone-lines to provide a high-speed internet-connection
- DSL is a cheap alternative to other highspeed connections, where new cables are needed
- Is available with up to 52 Mbps
- Offers parallel use of data and telephone services over the same line

What is DSL (cont.)

- Connections are only possible on the 'last mile' from the telco central office to the private telephone jack.
- Some houses may be too far away, so only a slow connection or no connection at all may be possible

 There are many types of DSL to meet everybodies needs

Different types of xDSL

- ADSL: Asymmetric DSL, with a larger portion of the capacity downstream, less upstream
- HDSL: High-bit-rate DSL, a technology for the business market. In commercial operation several years. Using two wire pairs
- SDSL: Symmetric DSL is a variation of HDSL using only one wire-pair
- VDSL: Very-high-bit-rate DSL which provides speeds up to 52 Mbps, but only for short distances, highest datarate of all

How does DSL work?

- Basic Principle
- Splitters
- Modulation techniques

Basic Principle

- POTS (and therefore regular modems) can only use frequencies up to 4 kHz
- This is due to the fact that the signals have to survive the switching centers and sometimes very long distances
- DSL uses much higher frequencies to achieve much higher data rates
- This works only on the 'last mile' from the telco to the user

Splitters

- ADSL and VDSL allow simultaneous use of telephone and data services
- In order to do this, the signal has to be split up at 4 kHz
- This is done by the splitter
- A splitter is a passive device (low pass filter)
- It splits the signal in the parts above and below 4 kHz and feeds it to the POTS and to the DSL-hardware

Modulation techniques

Carrierless Amplitude/Phase (CAP)

- A version of QAM. A single carrier is modulated and transmitted over the line.
- The carrier itself is supressed and reconstructed from the signal
- Easy to implement

Discrete Multi-tone (DMT)

- Divides the frequencies in bands (channels) of 4.3125 kHz each
- Provides more bands for downstream, than for upsteam. This is the reason for the assymmetry of the resulting technologies

- Uses QAM as described in the beginning for each channel, resulting in 60 kbps per channel
- Uses the Fast Fourier Transform (FFT) Algorithm for modulation/demodulation
- At the beginning of the communication the two modems test each channel and calculate its signal to noise (S/N) ratio
- More bits are assigned to channels with a high S/N ratio

• The line does not carry all frequencies equally well

Two Binary, One Quaternary (2B1Q)

- Straightforward signal type
- 4 amplitude levels (voltages) are used to transfer 2 bits per signal time step
- To increase the data rate, more levels are needed, thus its getting harder to discriminate between them at the receiver side
- or the signal time has to be increased

- Bits Voltage
 00 +3
 01 +1
 10 -1
 11 -3
- Example: 110110001101

Specifications

 Here is a list of the most important facts about some types of xDSL

	ADSL	HDSL	SDSL	VDSL
Bits/second	768kbps-9Mbps down 16-640kbps up	1.5 or 2Mbps	144kbps-1.5Mbps	13-52Mbps down 1.5-2.3Mbps up
Mode	asymmetric	symmetric	symmetric	asymmetric
Copper pairs	1	2	1	1
Range (~)	3.7 to 5.5km	3.7km	3km	$1.2 \mathrm{km}$
Signalling	analog	digital	digital	analog
Line Code	CAP/DMT	2B1Q	2B1Q	DMT
Frequency	up to 1-5MHz	196kHz	196kHz	up to 12MHz
Bits/cycle	varies	4	4	varies

Prices

- ADSL 768/128 kbps 1536/192 kbps
- SDSL/HDSL
 256 kbps
 2048 kbps

42,- € (incl. port) 129,- € (incl. port)

239,- € 889,- €

ATM E1
 2048 kbps
 1190,- €, but: new cabling is needed!

All prices are flatrate-prices + tax, 06/2003

Powerline Networks

What is Powerline?

- using the existing power cabling (~220V in Germany) for data-transmission
- two types: "access" (seems to be obsolete) "in-home"
- focus on "in-home"
- different types of bridges available (usb, ethernet etc.)
- we used Ethernet-over-Powerline

ALLNET 1682 Ethernet Bridge

- based on Intellon's PowerPacket chipset
- provides Ethernet-over-Powerline
- connects via Twisted-Pair to PC(NIC) or Switch
- Operating system independent (easy to handle)
- up to 12 nodes per network
- 56-bit encryption (password)
- works within 110V and 220V power circuits

ALLNET 1682 Ethernet Bridge

- throughput: ~5MBit/s
- frequency band: 4.3 20.9 MHz
- range: up to 200m

~99€ per bridge

Obstacles

- no predictable medium
- changing conditions, caused by: other appliances (fan, vaccum cleaner etc.) and wire quality
- changing conditions are: attenuation and noise

How to solve these problems ?

- OFDM as transmission protocol (Orthogonal Frequency Devision Protocol)
- nearly the same as DMT modulation (ADSL)
- not scaling the amount of bits carried by a channel
- monitoring the medium for changes in transfer function
- determine treshold for adapting to transfer function

transfer function - "snapshot"

84 channels

threshold

noise spikes

- now we know how to deal with the steadily changing attenuation conditions
- but attached appliances could cause spikes on the line...
- ...which can do harm to our data stream
- forward error correction is used
- surrounding data bits with correction bits for reconstruction (like hamming-code)

noise spikes

security issues

- 56-bit data encoding
- communication is only established if every participating bridge has the same password
- sniffing is nearly impossible, without special hardware
- arp-spoofing, ip-spoofing etc. won't work

Sniffing the line (cont.)

Ent Pas	er your own private password in the Network ssword box below. Press the Set Local button to the local device password	
Not	te that you will need to setup each device on your	
pov	VENING HERWORK WITTING SAME NERWORK F ASSWOLD.	
	Network Password	
	hallo	
	Set Local Restore Default	

Detection of Powerline-Devices (attached to PC)

<u>F</u> ile	<u>E</u> dit <u>C</u> aptu	re <u>D</u> isplay <u>T</u> ools				<u>H</u> elp
No. 🗸	Time	Source	Destination	Protocol	Info	
с× 19	1 0.000000	00:10:dc:84:99:a4	ff:ff:ff:ff:ff:ff	0x887b	Ethernet II	
-	2 0,002311	00:08:ed:58:13:ab	00:10:dc:84:99:a4	0x887b	Ethernet II	
🛢 Fra	me 2 (68 on w Arrival Times	vire, 68 captured) • Jun 30 2003 16+09+0	1 836507000			
	Time delta fr	rom previous packet: 0	.002311000 seconds			
	Time relative Frame Number:	e to first packet: 0.0 • 2	02311000 seconds			
	Packet Length	n: 68 bytes				
E Eth	Capture Lengt ernet II	th: 68 bytes				
	Destination:	00:10:dc:84:99:a4 (00	:10:dc:84:99:a4)			
	Source: 00:08 Tupe: Unknown	3:ed:58:13:ab (00:08:e > (0×887b)	d:58:13:ab)			
Dat	a (54 bytes)	(0,0010)				
<u> </u>						/×
0000	00 10 dc 84 9	39 a4 00 08 ed 58 13	ab 88 7b 01 19	X{		
0010	01 46 d6 13 a	ed 58 13 ab 20 80 fe	01 e8 03 e8 03 .F	.Jv LX	Z	
0030	fa 00 08 00 : fa 50 07 00	14 00 fa 00 e8 03 88	13 50 12 0a 00 .P	P.	••	H
Filter:			/ Res	et Apply	live capture in progress	>

Detection of Powerline-Devices (all)

<u>F</u> ile <u>E</u> dit <u>C</u> apture <u>D</u> isplay <u>T</u> ools					<u>H</u> elp	
No. 🗸	Time	Source	Destination	Protocol	Info	
	1 0,000000 2 0,000311 3 0,003283 4 0,004814	00:10:dc:84:99:a4 00:08:ed:58:13:ab 00:08:ed:58:13:ca 00:08:ed:58:17:53	ff:ff:ff:ff:ff:ff 00:10:dc:84:99:a4 00:10:dc:84:99:a4 00:10:dc:84:99:a4	0x887b 0x887b 0x887b 0x887b	Ethernet II Ethernet II Ethernet II Ethernet II	
Eth	ame 1 (60 (Arrival T Time delt Time rela Frame Num Packet Le Capture L Capture L Destinati Source: 0 Type: Unk ca (46 byte	on wire, <u>60 captured)</u> ime: Jun 30, 2003 16; a from previous packe tive to first packet: ber: 1 ngth: 60 bytes ength: 60 bytes on: ff:ff:ff:ff:ff:ff 0:10:dc:84:99:a4 (00: nown (0x887b) es)	14:13.479845000 t: 0.000000000 seconds 0.000000000 seconds (ff:ff:ff:ff:ff:ff:ff) 10:dc:84:99:a4)			
0000 0010 0020 0030	ff ff ff 00 00 00 20 f0 12 99 a4 40	ff ff ff 00 10 dc 84 00 ca 11 40 00 00 00 00 ff ff ff ff ff ff ff 00 56 1d 40 00 60 f6	99 a4 88 7b 01 07 . 00 00 28 f0 12 00 . dc 84 00 10 dc 84 . 12 00 .	e .e.v.e. `	······ ······	
Filter:			1	Reset App	Iy File: <capture> Drops:</capture>	0

"throughput benchmark" - building 101 using netperf

outlook

- there are more efficient and cheaper ways for data tansmission (like XDSL, WLAN etc.)
- but it is easy to handle
- more secure than WLAN (sniffing)
- nice toy ;)
- could be interesting for home automation purposes