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® The Neural Simulation Tool NEST is a simulation environ-
ment for large networks of spiking neurons.

® |t is optimized for networks with more than 10° neurons
and 10° connections.

® The key challenges are to represent the network succinctly
and to transmit events efficiently.

® NEST uses a hybrid strategy with MPI across cluster
nodes and threads on each computer.

® \We demonstrate the performance of NEST, comparing dif-
ferent communication algorithms.

Biological Neuronal Networks

One cubic millimeter of cortex contains approximately 10° neurons with
roughly 10* connections each (see figure below). Computational Neuros-
cience tries to model these networks to understand how macroscopic func-
tions of the brain relate to its neuronal substrate. Neurons communicate by
electrical pulses (spikes) over fibers (axons, dendrites) and chemical junc-
tions (synapses). Thus, models of biological neurons typically contain several
non-linear differential equations that must be evaluated with high precision.
We investigate the temporal dynamics of the spiking (pulse) activity in large
networks. This should not be confused with artificial neural networks that fo-
cus on learning or function approximation with few (several hundred) ideal-
ized threshold units.

Cortical neurons in a fixed, 100 pm-thick brain slice from a transgenic mouse with sparse neuronal GFP
expression. Left: Mosaic of 81 high-resolution image stacks acquired on a 2-photon laser-scanning mi-
croscope, part of a larger data set spanning several consecutive brain slices. Right: Individual stack
from this data set. Image: http://www.advanced-imaging-center.org/aic_partnerView.cfm?KeylD=49.

Modeling in NEST

The Neural Simulation Tool NEST [1] is implemented in C++. It can be used
either with its own simulation language interpreter (SLI) or by using the bind-
ings for the Python programming language. Simulations in NEST can be
seen as the computational counterpart of electro-physiological experiments in
Neuroscience. Building a simulation in NEST works as follows:

® Neuronal networks are assembled from a pre-defined set of model neur-
ons and devices to measure spikes and potentials or to stimulate neurons.

® The basic elements can be structured in sub-networks.
® Neurons of different types can be combined in the same network.

® Different synapse types can be used to connect neurons with either static
or dynamic parameters (e.g. for learning and adaptation).

® The synapse type determines how an incoming spike affects a neuron.

® After building the network, it can be simulated for a user-defined period of
biological time.

The source code for NEST is available under an open source license on the
homepage of the NEST Initiative at http://www.nest-initiative.org.

Network Representation in NEST

Conceptually, NEST represents a network as list of nodes, which are either
neurons, devices, or sub-networks. Each node has a unique ID and is per-
manently assigned to one of Ny, virtual processes. A virtual process (VP) is a

POSIX thread in one of N,,»; MPI processes. Each process contains Ny,
threads, resulting in a total of Ny, = Ny, - Nyp; virtual processes. Each VP

has a complete node list. It contains the nodes that are assigned to this VP
and lightweight proxies representing all other nodes. To save memory, the
node lists of all VPs in a single process are collapsed into a single list. The
following figure illustrates this for a network with 15 nodes, distributed over
two processes with two threads each (4 VPs):
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Performance and Scaling

To test the performance of our algorithms and data structures, we simulated
a balanced random network [2] with two sizes (small: 12500 neurons, 15.6
mill. connections; large: 125000 neurons, 156 mill. connections) and two
activity levels (slow: 13 Hz; fast: 53 Hz).

For all combinations of network size and activity level, we measured the run-
time of a simulation with different numbers of threads and different commu-
nication strategies (CPEX [3] vs. MPI_Allgather). The simulations were run
on a cluster of 24 Sun Fire X4100 computers, with 2 AMD DualCore Opteron
280 processors (at 2.4 GHz) and 2 GB of RAM per core. All simulations used
Scali MPI 4.4.1 over Mellanox Infiniband hardware.
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With increasing Ny, the

computational load on each VP
decreases, while the
communication between them
increases. Thus, for large Ny,

the communication dominates
o8 g0g0, the run-time of the simulation.

Simulation time [s]

For Nyp > 16, MPI_Allgather is
superior to CPEX.
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(A) The network as directed graph; pg = Poissonian spike generator, iaf = integrate-and-fire neuron, vm
= voltmeter. (B) A sketch of four VPs distributed in a modulo fashion onto four processes. (C) The col-
lapsed representation of the network.

The network connections dominate the memory consumption of a simulation.
Thus NEST distributes the connections across the VPs. Each VP only stores
those connections that reach nodes this VP.

Scheduling and Communication

NEST evaluates the network model on a time grid ¢, = #-A, with A the shortest

transmission delay in the network. A global state transfer function U propag-
ates the system from one state S; to the next, such that S, , < U(S,). Starting

with t=0, the network state is driven by the following algorithm, :

while < Tsmp do

parallel on all VP do
deliver all events due
call U(S,) for all nodes

end parallel

exchange events between VPs

Increment network time: t < r+A
end while

During U(S,), nodes emit spikes that must be sent to their targets with a delay

that depends on the connection. The events are buffered in a thread-safe
data-structure (fig. A) until they are delivered. Instead of transmitting the
complete event to each target process, it suffices to transmit only the IDs of
those nodes that emitted a spike. Each target process then reconstructs the
events with their time-stamps, using markers in the transmitted data (fig. B).
The reconstructed events are then delivered in parallel by each process.

(B) | Threads vs. Processes
(low computational load)
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The performance degrades with
increasing number of threads,
because NEST allocates all
memory with its main thread.
This is inefficient on NUMA
architectures if multiple
processes access memory
concurrently. To solve this,
NEST should allocate memory
with the thread that is going to
use it.
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(C) | Threads vs. processes
(high computational load)
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In this simulation, the neurons
are driven by random spikes
instead of static currents. This
leads to higher computational
load. As indicated in panel A,
scaling is better if the run-time is
not dominated by communication

Note that some points are
missing due to technical
problems on the cluster.
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We also compared Scali MPI to MPICH 1.2.7 and OpenMPI 1.2.3 (not
shown). The results suggest that the MPI implementation has only little effect
on the performance of NEST.
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