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Abstract. To understand the principles of information processing in
the brain, we depend on models with more than 105 neurons and 109

connections. These networks can be described as graphs of threshold
elements that exchange point events over their connections.

From the computer science perspective, the key challenges are to repre-
sent the connections succinctly; to transmit events and update neuron
states efficiently; and to provide a comfortable user interface. We present
here the neural simulation tool NEST, a neuronal network simulator
which addresses all these requirements. To simulate very large networks
with acceptable time and memory requirements, NEST uses a hybrid
strategy, combining distributed simulation across cluster nodes (MPI)
with thread-based simulation on each computer. Benchmark simulations
of a computationally hard biological neuronal network model demon-
strate that hybrid parallelization yields significant performance benefits
on clusters of multi-core computers, compared to purely MPI-based dis-
tributed simulation.

1 Introduction

The neuronal networks in our brains can be described as weighted, directed
graphs, with neurons as nodes and synaptic connections as edges. Neurons com-
municate by sending and receiving point events (spikes) through their connec-
tions (synapses). In the mammalian cortex, each neuron sends connections to
about 104 other neurons and receives connections from as many. Just 1 mm3

cortex contains some 105 neurons with 109 connections [1]. This represents a
threshold size for simulations, as a realistic number of synapses per neuron can
be combined with realistic sparseness (connection probability ∼ 0.1). Brain func-
tion emerges from the spatio-temporal patterns of neuronal spike activity, but



the principles are poorly understood. Progress in understanding brain function
therefore depends on simulation studies of large cortical networks.

In large neuronal networks, we can neglect the geometric and biophysical
complexity of individual nerve cells and describe neurons as point-like objects
with a dynamic state governed by a set of ODEs. The most common state
variable is the membrane potential V , which is affected by spikes that arrive at
the neuron’s synapses. Whenever V crosses a threshold value Vth, the neuron
produces a spike, which is transmitted to all adjacent neurons with a delay of a
few milliseconds. Each connection can have a different delay and weight. Weights
may evolve as a result of neuronal activity, a phenomenon known as synaptic
plasticity, the biological substrate of learning. The spikes of an individual neuron
are rare and occur at rates of 1–50 Hz, whereas the rate of incoming spikes is of
the order of 100 kHz due to some 104 incoming connections.

Simulating large-scale neuronal networks poses several challenges: (i) 109–
1012 connections must be stored; this requires a distributed representation. (ii) A
large number of spikes must be buffered until they are transmitted across the
network. (iii) Simulation results must be reproducible down to the level of mem-
brane potentials and spike times. (iv) The object-oriented implementation must
be appropriate for the problem domain and allow network and machine level
optimizations such as efficient caching.

In this contribution, we describe how the Neural Simulation Tool NEST [2]
addresses these issues to efficiently simulate neuronal networks of more than 105

neurons and 109 synapses. In section 2 we discuss how NEST represents nodes
and connections, before describing the update and communication algorithms
in section 3. Section 4 demonstrates the performance of our hybrid approach.
NEST is available from www.nest-initiative.org.

2 Network Representation

A network model consists of nodes, connections, and events, each represented
by an abstract base class. Models for neurons and devices inherit from class
Node and implement the state vector, the internal dynamics, and the responses
to different types of events.

NEST distributes a network model over NVP virtual processes. A virtual
process is a POSIX thread that lives in one of NMPI MPI processes [3, 4]. The
total number of virtual processes NVP is the number of MPI processes times the
number of threads per process: NVP = NMPI ×NThrd. NEST ensures that for a
given number of virtual processes NVP, all simulations of a model yield identical
results, independent of the combination of NMPI and NThrd.

Neuron models are often stochastic, consuming many random numbers. To
distribute the load of random number generation while obtaining identical sim-
ulation results for different combinations of NMPI and NThrd on NVP = const
virtual processes, we give each virtual process its own random number genera-
tor. By default we use a lagged Fibonacci generator, because it can be seeded to
produce non-overlapping sequences of random numbers [5].



2.1 Nodes and Proxies

In a network with n nodes, each node is given a unique integer gid in order of
creation, and is assigned to a virtual process such that vid = gid mod NVP.
Each virtual process manages the memory for its nodes. In addition, each virtual
process has a vector of size n, called node list, with pointers to its own nodes
and pointers to proxies for nodes that belong to other virtual process. Within
an MPI process, we can collapse the node lists of all its virtual processes into a
single list to conserve memory, as illustrated in figure 1.
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Fig. 1. Distributed and multi-threaded network representation. (A) The network as a
directed graph. (B) Sketch of the distribution of four virtual processes onto two MPI
processes, P0 and P1. (C) Collapsed node lists of the two MPI processes containing the
nodes of two VPs each. The first column shows the node’s gid, the second contains
the VP a node is assigned to; ’-’ indicates that a node is created for each VP. The
third column contains the node type: pg, Poisson spike generator device; vm, voltmeter
device; iaf, integrate-and-fire model neurons.

This representation has the following advantages: (i) we can access each node
directly with its gid as index to the node list on any virtual process; (ii) each
virtual process knows the type of each node in the network; (iii) there is no
memory overhead for pure multi-threaded simulations.



For a network of n nodes, each requiring SN bytes of memory, and proxy
nodes requiring SP bytes, the required memory is given by:

Mnodes =
n

NMPI
SN +

(

n− n

NMPI

)

SP . (1)

Typical values are SN = 480 bytes and SP = 56 bytes. Thus, for 10 and more
MPI processes, more than half of all memory occupied by objects is occupied by
proxy nodes, and more than 90% for more than 80 MPI processes. In absolute
numbers, though, Mnodes is only around 70 MB for a network of 106 nodes
distributed across 100 processes, which is negligible compared to the memory
required for the connections in the network, cf. sec. 2.2. From a performance
aspect, a node list filled with mostly proxies could become suboptimal if the
node list became so large that it could no longer be cached efficiently. In this
case, a fast hashing lookup may become more efficient.

Devices So far we assumed that nodes correspond to neurons. We will now
discuss nodes representing devices, such as spike injectors and recorders. There
are two types of devices: recording devices and stimulation devices. Recording
devices measure the state of one or more neurons and write the data to disk.
If nodes on different virtual processes are assigned to the same device, each
of the virtual processes gets its own instance of the recording device. This has
two advantages: (i) the measured data need not be transmitted between virtual
processes; (ii) each device instance can write to its own local disk. Stimulation
devices supply signals to one or more neurons, thereby manipulating their state.
Again, each virtual process has its own instance of a given stimulation device to
reduce the amount of data that must be exchanged between virtual processes.
For some stimulation devices which produce random signals we must ensure that
all instances in different virtual processes produce identical signals. Thus, these
devices cannot use the random number generator of the virtual process, but have
their own random number generators, initialized with identical seeds.

2.2 Connections

A connection between two nodes is defined by at least four numbers: the gid
of the sending node, the gid of the receiving node, a weight, and a delay. More
complicated connections have weights that change, depending on the activity of
the connected nodes.

Different types of connections can be implemented by classes that derive from
the abstract base class Connector. These can implement arbitrarily complex
dynamics, provided they only depend on the previous state, the time since the
last event, and information available from the target node. The most important
applications are synaptic depression [6] and spike-timing dependent plasticity
(STDP) [7]. An algorithm for STDP suitable for distributed computing can be
found in [8].



Because the connections dominate the memory requirements of large net-
works, NEST splits them up such that each virtual process only stores the in-
coming connections to its own nodes. A vector inside each Connector contains
pointers to all local target nodes, along with the delay (integer), and weight
(double). The memory required for connections per MPI process is:

Mconn =
n× c× SC
NMPI

, (2)

where c is the number of outgoing connections per node and SC the memory
per connection. For connections with constant weight and delay, SC = 32 bytes;
plastic synapses require more memory. A network of 106 nodes with 104 con-
nections each thus requires 32 GB connection memory per process if distributed
across 10 MPI processes, but only 3.2 GB per process if distributed across 100
processes.

A ConnectionManager stores the connections to all virtual processes of an
MPI process in a three-dimensional data-structure. The first dimension is the
thread number (virtual process) of the target node. The second dimension is the
gid of the source node, and the third dimension is the index of the connection
type. This memory layout has two advantages: (i) we can construct networks
with heterogeneous synaptic dynamics; (ii) it is optimal for multi-threaded event
delivery (cf. sec. 3.2) and the efficient implementation of synaptic dynamics [8].

3 Network Update and Event Exchange

Conceptually, NEST evaluates the network model on an evenly spaced time-grid
ti := i ·∆ and at each point, the network is in a well-defined state Si. Starting at
an initial state S0, a global state transfer function U(S) propagates the system
from one state to the next, such that St+∆ ← U(St, ∆). As a side effect of U(St),
nodes create events that must be delivered to the target nodes after a delay that
depends on the connection.

NEST evaluates a network model using the following algorithm:

1: T ← 0
2: while T < Tstop do
3: parallel on all vp ∈ NVP do
4: deliver all events due
5: call U(ST ) for all nodes
6: end parallel
7: exchange events between VPs
8: increment network time: T ← T +∆
9: end while

The NVP virtual processes evaluate steps 4 and 5 in parallel, and in step 6 they
synchronize to exchange their events in step 7.

Although NEST uses a discrete event framework, it does not use a global
event-driven update [9, 10]. Event-driven simulation assumes that the communi-
cation between nodes is rare and the update of a node is expensive. This does not



hold for biological networks, however: If a typical cortical neuron receives spikes
from ∼ 104 other neurons at a rate of ∼ 10 Hz, the average interval between
spike arrivals is ∼ 0.01 ms. However, for most neuron models integration steps
of h ∼ 0.1 ms are sufficient. Thus event-driven update would need one order of
magnitude more updates than time-driven update; see [11] for details.

In the following we describe in more detail (i) how to maximize the time
increment ∆ and (ii) how to collect, exchange, and deliver events between virtual
processes.

3.1 Exploiting Delays for Cache-Efficient Update

Nodes affect each other by exchanging events that arrive at their destination
with a delay dij > 0. The time period ∆ is the largest permissible temporal
desynchronization between any two nodes in the network. ∆ may be increased
as long as this does not change the order of events. This is equivalent to a system
of distributed clocks that synchronize each other with events. Lamport showed
that the smallest transmission delay dmin defines the interval at which clocks
must be synchronized to maintain the order of events [12]. Accordingly, NEST
sets ∆ to dmin. During this period, all nodes are effectively decoupled.

Most neural simulators use the integration step h of the neuron dynamics as
the time increment. Maximizing ∆, typically to ∼ 1 ms, i.e. about 10 times larger
than h, has two advantages: (i) the virtual processes can run independently for
a longer time, thereby reducing the number of synchronizations and thus the
communication overhead; (ii) the state-update of each node can run a few tens
of integration steps en bloc, keeping all required data in the CPU’s L1 cache.

3.2 Global Event Exchange

NEST does not transmit individual events between virtual processes, as there
are far too many. Instead, for each node that produced an event, the follow-
ing information is transmitted: the gid of the sending node and the time at
which the event occurred (address event representation [13]). All other connec-
tion parameters, such as the list of weights, delays and targets, are available at
each virtual process. With this information, the virtual processes reconstruct the
actual events and deliver them to their destinations.

We describe below the buffering and transmission of spike events constrained
to a discrete time grid tn = nh. This scheme is easily extended to spikes at
arbitrary times [11].

Sender-Side Buffering Each MPI process has a three-dimensional buffer
(spike register) to record the nodes that produced a spike-event during the up-
date interval ∆. The first dimension represents the VP, so that they can write
without collisions. The second dimension represents the time of the event with
one entry per integration step h. The third dimension is a list of gids, one for
each spike on a given thread at a given time. The total number of spikes per



virtual process per update interval is small: even assuming 106 neurons firing at
10 Hz and distributed across 20 VPs, only some 500 spikes occur per VP and
update interval. With 4 threads per MPI process, the spike register occupies less
than 20 kB.

Spike Exchange and Delivery Before spikes are exchanged between MPI
processes, they are copied from the spike register to a communication buffer as
follows: their gids are written to the buffer, ordered by the integration time step
at which the spikes were generated. Sentinels separate spikes generated during
different steps. Since the number of integration steps per update cycle is fixed,
the receiver can reconstruct the spike time from the sentinels. Each process also
maintains buffers to receive the gids from other processes. Once all buffers are
set up, the spike buffers are exchanged between MPI processes by simultaneous
pairwise exchange using CPEX [14–16].

Each virtual process delivers the spikes to its nodes in the parallel step 4 of
the update algorithm (sec. 3). For each entry of the communication buffer, which
now contains both local and remote spikes, it executes the following algorithm.

1: nsentinels ← 0
2: if entry is sentinel then
3: nsentinels ← nsentinels + 1
4: else
5: calculate tspike from network time and nsentinels

6: for all tgt ∈ local targets do
7: send spike time, weight, delay to tgt
8: tgt stores spike in its ring buffer according to delay [14].
9: end for

10: end if

4 Performance

The scaling of large-scale simulations of neural networks depends significantly on
the computational load of the individual neuron. The more complex the neuron,
the better the scaling, as the ratio of local computation to communication costs
increases. We therefore consider the following benchmark to be a hard problem
in the field of distributed neural network simulations: the computation load is
low, because the neuron and synapse models are simple, but the communication
load is high, as the network has a biologically realistic connection density.

Benchmark Simulation The network consists of 12500 leaky integrate-and-
fire neurons (80% excitatory, 20% inhibitory), each receiving input from 10% of
all neurons, mediated by alpha-shaped current-injecting synapses with a synaptic
delay of 1 ms (total number of synapses: 15.6× 106). The neurons are initialized
with random membrane potentials and receive a constant DC input adjusted
to sustain asynchronous irregular firing at 12.7 Hz [17]. For a complete network
specification and numerics, see [11].



Simulation times were measured on a cluster of Sun X4100 compute nodes
equipped with two dual-core 2.4 GHz AMD Opteron 280 processors, 8GB RAM,
and Mellanox MTS2400 Infiniband interconnect under SuSE Linux Enterprise
Server 9 using the Scali MPI Connect 4.4 library. Threads were bound to CPU
cores using the taskset command.
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Fig. 2. Performance of different parallelization strategies as a function of the number
of virtual processes. Single-thread MPI processes, dashed line; MPI processes with 2
threads, solid line; MPI processes with 4 threads, dash-dotted line. (A) Simulation
time for one biological second in double-logarithmic representation. (B) Speed-up. The
gray diagonal indicates the slope for a linear speed-up in both cases. Data obtained for
simulations of 10 s biological time with a time step of 0.1 ms, averaged over 5 trials.

Results Figure 2 clearly demonstrates that the parallelization strategy signif-
icantly affects the scaling and absolute run-time of the simulation. A purely
MPI-parallelized simulation shows supra-linear speed-up up to 8 virtual pro-
cesses, rapidly saturates, and then undergoes a significant decrease in perfor-
mance. The supra-linear speed-up is due to increasingly efficient caching [14],
and the saturation in performance is due to the communication overhead.

By using a hybrid strategy with two threads per MPI process, such that
both threads are bound to the same CPU, the number of MPI processes is
halved. This reduces the number of send/receive operations per communication
step by a factor of four and results in a performance which is better than the
single-threaded case for numbers of virtual processes greater than eight. The per-
formance of this hybrid strategy remains supra-linear up to 16 virtual processes,
thus substantially reducing the absolute simulation time.

Reducing the number of MPI processes further by increasing the number of
threads per MPI process to four leads to worse performance for small numbers of



virtual processors. This is due to the fact that memory allocation is performed by
a single thread on each MPI process; as a result of the NUMA architecture, mem-
ory access is sub-optimal for the two threads on the non-allocating processor.
The role of memory access is corroborated by simulating with two threads per
MPI process as above, but binding the threads to different CPUs. This results in
a performance which lies between that of the two-thread same-CPU variant dis-
cussed above and that of the four-thread variant (data not shown). This analysis
is further supported by benchmarks performed on a Sun V40z server with four
dual-core 2.2GHz AMD Opteron 875 processors, in which the threads used dur-
ing simulation were placed at arbitrary cores relative to the thread constructing
the network. Simulation times increased with increasing memory-access distance
between the core used for construction and those used for simulation [18]. The
costs of the sub-optimal memory access outweigh the benefits of decreasing the
number of packets until 16 virtual processes, after which the four-thread variant
becomes the most efficient simulation strategy.

5 Conclusions

Supra-linear scaling for a distributed biological neural network simulation was
demonstrated for the first time in [14]. This result has since been confirmed by
several other laboratories. In the present work we show that a hybrid approach to
neural network simulation, combining multi-threading and distributed comput-
ing techniques, achieves an even better performance than a purely distributed
solution. This suggests that the infrastructure of NEST is appropriate for future
generations of multiprocessor, multi-core clusters.

The problem studied here was chosen to be particularly hard with respect
to communication. In studies with larger neural networks or with more complex
dynamics, NEST performance saturates at much larger numbers of processors:
Simulation time for a network of 105 neurons with 109 synapses, driven by Pois-
son background input, shows supra-linear scaling up to 80 virtual processes on
the same hardware. Other laboratories have shown good scaling of large-scale
simulations on systems with thousands of processors, albeit on less hard prob-
lems [19, 20]. The scaling of NEST on such systems remains to be investigated.

The benchmarking results demonstrate the importance of sophisticated mem-
ory allocation on modern NUMA machines. Future work on NEST will be con-
cerned with improving memory access times in a hybrid message-passing and
multi-threading environment and further optimizing communication with re-
spect to number of packets and latency hiding.
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