Parallel and distributed simulation of large biological neural networks with NEST

Jochen Martin Eppler"*°, Abigail Morrison*°, Markus Diesmann®>*, Hans Ekkehard Plesser’, Marc-Oliver Gewaltig'
eppler@biologie.uni-freiburg.de, abigail@biologie.uni-freiburg.de, diesmann@brain.riken.jp, hans.ekkehard.plesser@umb.no, marc-oliver.gewaltig@honda-ri.de

1

Carl-Legien-Str. 30
D-63073 Offenbach
http://www.honda-ri.de

Honda Research Institute Europe GmbH

® 2
- ® _o _ . |
® “‘ Bernstein Center for Computational Neuroscience
‘2. Hansastral3e 9a

bccn D-79104 Freiburg

freiburg http://www.bccn.uni-freiburg.de

et

3 4

=) Albert-Ludwigs-Universitat RIKEN
D-79104 Freiburg Wako
http://www.brainworks.uni-freiburg.de Japan

Brain Science Institute

ept. of Mathematical Sciences and Technology
orwegian University of Life Sciences
-1432 As

ttp://www.umb.no

® NEST is an environment for the simulation of
large neural systems
® \We present three major improvements:
1. Support for multi-core processors, SMP ma-
chines and computer clusters
2. Support for different models of connections,
including Hebbian learning, spike-timing de-
pendent plasticity and short-term dynamics
3. Increased performance and better scaling

Introduction

The Neural Simulation Tool NEST is a simulation environment
for large networks of point neurons or neurons with a small num-
ber of electrical compartments. Large here means more than 10°
neurons and 10" synapses. It is implemented as an efficient C++
library and provides a command line user interface with its own
simulation language, SLI.

In previous work (e.g. [1]) we focused mainly on the simulation
technology used in NEST 1.0. In this contribution we present two
major developments that improve both its flexibility and its per-
formance:

1. The combination of techniques for multi-threaded and dis-
tributed simulation
2. A framework for heterogeneous synapses.

The first two columns of this poster show these improvements in
detail. The third column contains the results of benchmark tests,
which were performed on different architectures.

The innovations described here will be incorporated into NEST
2.0, which will be released later this year.

In @ companion contribution (49, Exploring large-scale models of
neural systems with the Neural Simulation Tool NEST) we
demonstrate NEST from a user perspective.

Multi-threaded and distributed simulation

On multi processor machines, NEST currently uses threads to
update the network in parallel. As threads are executed in a sin-
gle process and thus bound to a single computer, the network
size is limited by the amount of locally available memory. We
solve this problem by distributing the network across multiple
computers. Communication between them is carried out using
the Message Passing Interface (MPIl). However, several new
problems arise:

1. An even partitioning of the network across different computers
has to be found

2. The higher latency and slower communication between neu-
rons on different computers has to be taken into account

We solve the first point by introducing the concept of local and
remote threads (virtual processes), on which the network ele-
ments are distributed in the following way:

® Neurons are assigned to a single virtual process, on all others
a proxy node Is created

® The ID of a neuron's virtual process is calculated by a modulo
operation

® Devices (e.g. voltmeters, spike generators) are replicated for
each virtual process

® (Connections between elements are only established on virtual
processes, where the post-synaptic node is not a proxy

® The virtual processes (vp, are distributed equally onto the real

processes (P) according to a modulo operation

The following figure shows this scheme applied to a small exam-
ple network, which is distributed onto four virtual processes:

Pg Pg Pg

proxy
iaf

iaf proxy

proxy

proxy C proxy
proxy proxy proxy

proxy C

proxy (

iaf
S:iaf sd sd C sd sd
/ \ L VPO vp2 | | vp1 vp3

4:iaf 6:sd
Po Pl

2:iaf PE C
/ proxy
l:pg

proxy
3:iaf

iaf

OGP~ WIN]|F
OGP W]IN]|F
(o) RGN B OV I SR I
OGP~ |IW]IN]|HF

References

[1] M. Diesmann and M.-O. Gewaltig. NEST: An environment for neural systems simu-
lations. In T. Plesser & V. Macho (Eds.), Forschung und wisschenschaftliches
Rechnen, Beitrage zum Heinz-Billing-Preis 2001, Volume 58 of GWDG-Bericht, pp.
43-70. Gottingen: Ges. fur Wiss. Datenverarbeitung, 2002.

[2] A. Morrison, C. Mehring, T. Geisel, A. Aertsen and M. Diesmann. Advancing the
boundaries of high connectivity network simulation with distributed computing. Neu-
ral Comput. 17 (8), 1776—1801, 2005.

[3] N. Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. J. Comput. Neurosci. 8 (3), 183—-208, 2000.

Partially funded by DAAD 313-PPP-N4-lk, EU Grant 15879 (FACETS), and BMBF
Grant 01GQO0420 to the Bernstein Center for Computational Neuroscience Freiburg

pPg = poisson spike generator, iaf = integrate-and-fire neuron, sd = spike detector. The
commands to build the network are shown in the next column

The improved network representation offers a direct solution to
the communication problem (2.), which is described in [2]:

® We only transmit the IDs of neurons that spiked. The events
are reconstructed on the machine of the post-synaptic neuron.

® We communicate in intervals of the minimal synaptic delay in
the network. This is sufficient, because the elements are func-
tionally decoupled during this time.

In the multi-threaded mode, the network is still constructed serial-
ly. In distributed mode, NEST constructs the network in parallel,
which reduces the simulation time.

Flexible synapse management

In NEST 1.0, connections were characterized by the static pa-
rameters sender, receiver, weight and delay. This made the sim-
ulation of plasticity and learning rather difficult. We have now im-
plemented a framework that provides different types of synaps-
es, currently

® Static synapses with static connection parameters
® Short term dynamics for synaptic depression and facilitation
® Synapses for spike-timing dependent plasticity.

Below, we give a short example of the connection facilities In
NEST's simulation language SLI:

Performance and scaling

The improved network representation optimizes the performance
of NEST.

Below are the simulation times of a network with 12,500 neurons
and 1,000 random connections each (described in [3]).

@® poisson_generator Create
1af_neuron 4 CreateMany
spilke_detector Create

@ << /weight 0.3 >> SetSynapseDefaults

® 1 [2 4] DivergentConnect
[2 4] 5 ConvergentConnect

@2 3 0.5 1.0 Connect

® stdp_synapse SetSynapseContext
[5 3] 6 ConvergentConnect

300 y r 32
200}

run time [s]
(@]
=
4
4
speedup
Q

N
()]

linear prediction . Se.
—o—NEST 1.0 T TSRd
-0 -NEST 2.0 (MT)
% NEST 2.0 (MP)

2 4 8

10
1

processors

processors

Performance of the simulation on a SMP machine (Sun Fire V40z, 4 Dual Core AMD
Opteron 875, 2.2 GHz, 1 MB cache). MT = multi-threaded, MP = distributed with mes-
sage-passing. The left panel shows the absolute run times with respect to the used
number of processors. MT uses a single process with varied number of threads, in
MP, the number of processes is varied, with one thread in each process. The right
panel shows the speedup, given by T,/Ty, where T, is the run time of the serial version,
Ty the run time of the parallel version with N processors.

The syntax of SLI is such that arguments are given before the
function that uses them. Built-in functions are printed in bold
face.

® The Ccreate command and its variants create neural ele-
ments as well as device nodes.

@ SetSynapseDefaults sets the default values for all subse-
quent connections.

® Many varieties of the Connect command are available to
realize different wiring structures and topologies. |f no additional
parameters are given, the default values are used.

@ It is also possible to specify weight and delay directly in the
call to Connect.

® To set the default synapse type for following connections, the
command SetSynapseContext IS used.

New synapse types can be created from existing ones by
changing their parameters and storing them with a new name.
These are then also available to SetSynapseContext.

The memory requirements of neural network models are often
dominated by the space for the synaptic connections. To reduce
that fraction, we have implemented different methods for com-
pressing connection data ([2]) by storing redundant parameters
only once.

The different synapse types are implemented in a modular fash-
lon so that users can implement their own models.

64

run time [s]

2 1 2t
00 linear prediction

—o—NEST 2.0 (MP)
1 2 4 8 10 20 40 1 2 4 8 10 20 40
processors processors

100

The same network as above simulated on a computer cluster (20x2 AMD Opteron 250,
2.4 Ghz, 1 MB cache, Dolphin/Scali interconnect).

Both figures show that NEST scales better than linear, which can
be explained by optimal cache utilization ([3]). However, the mul-
ti-threaded simulation still suffers from cache problems.

= Future work:

® |mplement a method for parallel network construction in
multi-threaded simulation

® Further improve the cache utilization of multi-threaded
simulations

® Implement a scheduling mode that allows to execute
multiple virtual processes in a single thread

