Convenient simulation of spiking networks with NEST?2

Jochen Martin Eppler'?, Moritz Helias?, Eilif Muller’, Markus Diesmann®*, Marc-Oliver Gewal’[idg1

eppler@biologie.uni-freiburg.de, helias@bccn.uni-freiburg.de, eilif. mueller@epfl.ch, diesmann@brain.riken.jp, marc-oliver.gewaltig@honda-ri.
. . 1 . = 2 3 4
- N]) Honda Research Institute Europe & .‘." Bernstein Center for Computational Neuroscience Laboratory of Computational Neuroscience RIKEN Brain Science |nstitute
- - - = Carl-Legien-Str. 30 ... HansastralBBe 9a ~ Swiss Federal Institute of Technology, EPFL Wako City
1“ 1 t 1at 1ve 63073 Offenbach/Main, Germany * '.', bccn 79104 Freiburg, Germany - 1015 Lausanne, Switzerland 351-0198 Saitama, Japan
http://www.honda-ri.de freiburg http://www.bcen.uni-freiburg.de o Z http://lcn.epfl.ch http ./ www.brain.riken.jp

Models

Overview

A network consists of nodes and their connections. Nodes are neurons,
devices, and sub-networks. Connections are the channels along which
different types of events like spikes or currents can travel.

NEST supports parallel and distributed simulation.

On single computers, NEST distributes the network over the available
processors, each executing one part. This reduces the simulation time
considerably [6].

-NEST is a simulator for neural systems
at the level of spiking neurons.

NEST offers different models for neurons, synapses, and devices:

* Integrate and fire models with current-, and conductance-based On computer clusters, NEST dis-

-NEST is Optimized for Iarge networks NEST has commands to create unstructured networks of many neu- . >
. . . >YyNapSES. . . rons, or structured networks where the neurons are arranged in sheets tributes the network over the |
o |t runs efﬁc|ent|y on S|ng|e- and mu|t|- ° Ne.uror? mo.dels W'th precise Some of NEST’'s neuron models or volumes. available Com.puters. Each com- ;- :
spike-time integration [6]. . . puter creates its own part of the |%.
processor computers and clusters. » Hodgkin-Huxley models with | 2% neme Modeltype Synapse response Create (“iaf neuron”,n) creates n neurons and returns a list network and stores only connec- | | " N =
N . current-and conductance | < b with IDs of the new nodes tions to its own neurons, This re- | k21| | Gz]
»Simu Iat|0ns Can be written In Pyth0n° based synapses. pry—— integrate and fire _ exponential current LayoutNetwork (“iaf neuron”, [2,10,10]) creates multi- duces the run-time of simulations T—
 Synapses with spike-time de- | %t psc apha ntegrate and fire _ alpha function current dimensional networks, here two 10 x 10 sheets of integrate and fire and increases the computer memory that is available to NEST [7].

- This poster illustrates the main features

pendent pIaSt|C|ty (STDP) or iaf_cond_exp integrate and fire exponential conductance neurons. A I|St Of ar- L d N k
Of N EST from the user’S perspective Short‘term faCiIitatiOn and iaf_cond_alpha integrate and fire alpha function conductance bitrary Iength deﬁnes ayere etwor S
° . hh_psc_alpha Hodgkin-Huxley alpha function current _ In [2] :nest.LayoutNetwork("iaf neuron", [2,10,10]) o
depreSSIOn. . . hh_cond_exp_traub Hodgkin-Huxley exponential conductance the Shape Of the net Out [2] : [1] I nte reSted I n N EST?
« Stimulus devices, for differ- work. Sheets are rep-
. In [3] :nest.PrintNetwork ()
ent currents, Poisson and resented as nested +-[0] root dim=[1 2 10 10] . . . o
custom spike-trains 5erEr ke | NEST is developed by the Neural Simulation Technology Initiative (NEST
’ ’ +-[1] subnet dim=[2 10 10] el e
What you can dO W|th N EST Devices to record spikes and membrane potentials. PrintNetwork () » - LGN V1 Llnmatlve), WhIC}? \éva? fm:\ndgd IT 2.001]\c/\;lth Gl alrr; (9 Gl CIe
. . . In [4] :nest.PrintNetwork (2 _ ocument methods for the simulation of large neural systems.
Models for neurons, devices, synapses, and events are implemented in shows a part of the +-[0] root dim=[1 2 10 10] " Two visual areas, LGN and V1
: | " Bach area represented by a 2 The NEST Initiative regularly prepares releases of the NEST software
. . . C++. You can add your own models to NEST. network. Optional pa- +-[1] subnet dim=[2 10 10] dimensional sheet of 10 by 10 9 y prep '
I\!EST is a network simulator for models that focus on the dynamics, rameters determine I L st i 10 101 integrate and fire neurons. How to get NEST
size, and structure of neural systems rather than on the exact geome- how much of the net- +-[2] subnet dim=[10 10]

try of individual neurons [1,2].
Examples of such models are:

« Models of sensory processing e.q. in the visual or auditory cortex of
mammals [4].

« Models of network activity dynamics, e.g. in laminar cortical net-
works or balanced random networks.

« Models of spike-synchronization in feed-forward networks like syn-
fire chains [5].

e Learning and plasticity in models of sensory processing.

Modeling paradigm

A simulation with NEST is like an electrophysiological experiment that
takes place inside the computer.

* You start with a system to investigate and an idea of what you want
to learn from the experiment.

* You build the neural system by arranging model neurons and con-
necting them according to your model.

¢ You can use different model neurons in one network.

* You define layers, areas, and sub-networks.

* You can use different types of synapses (e.g. STDP, facilitation, and
depression), to connect your model neurons.

* Special elements, called devices, are responsible for measurement
and stimulation.

* After the network is set up, the simulation kernel executes the mod-
el for a period of simulated time.

NEST and Python

There are two ways to use NEST:

1. As Python module (PyNEST [3]).
2. With NEST’s native simulation

language SLI.

Python is a high-level language with
a simple syntax that is easy to read

and easy to learn [3].

It provides many powerful mod-
ules for scientific computing and

visualization.

An example

We simulate a single integrate and

fire neuron that receives
a sine current as well as
excitatory and inhibito-
ry Poisson noise as in-
put. The neuron is sim-
ulated for 1000 ms.

The panel shows the
simulation script and
graph of the membrane
potential of the neuron,
using Python's Matplot-
lib [9]

Python/PyNest

SLI

work is shown.

Connecting neurons

All of NEST’s connection commands base on three primitives: a) Sim-
ple connections between two neurons, (b) divergent connections from
one neuron to a set of targets,

and (c) convergent connec-
tions from many neurons to a
common target.

CL) Simple b) Divergent C) Convergent

0—0 OQL QY9
The example below shows 0—0 O O Z}%

One Integrate and Fire Neuron

okd

#! /usr/bin/env python

Membrane potential

import nest
import nest.voltage_trace

neuron = nest.Create("iaf_neuron") g
noise = nest.Create("poisson_generator", 2)

nest.SetStatus(noise, [{"rate": 80000.0},
{"rate": 20000.0}])

membrane potential (m'
& & én
w o

sine = nest.Create("ac_generator")
nest.SetStatus(sine, [{"amplitude™: 100.0,

"frequency": 2.0}])

LIO[O[+| | Ba| pnzoom mode

voltmeter = nest.Create("voltmeter")
nest.SetStatus(voltmeter, {"withgid": True, "withtime": True})

nest.ConvergentConnect(noise, neuron, [1.0,-1.0], 1.0)
nest.Connect(voltmeter, neuron)
nest.Connect(sine, neuron)

nest.Simulate(1000.0)
nest.voltage_trace.from_device(voltmeter)

how the random connections O
of the Brunel model [8] are
drawn with these primitives.

Connectivity for the random network
described by Brunel (2000)
Creating synapse models

nest.CopyModel("static_synapse","excitatory" {"weight".J_ex, "delay".delay})

nest.CopyModel("static_synapse","inhibitory" {"weight":)_in, "delay":delay})

print "Connecting devices."
nest.DivergentConnect(noise,nodes_ex,model="excitatory")
nest.DivergentConnect(noise,nodes_in,model="excitatory")

nest.ConvergentConnect(range(1,N_rec+1),espikes,model="excitatory")
nest.ConvergentConnect(range(NE+1,NE+1+N_rec),ispikes,model="excitatory")

print "Connecting network."
nest.RandomConvergentConnect(nodes_ex, nodes_ex+nodes_in, CE,model="excitatory")
nest.RandomConvergentConnect(nodes_in, nodes_ex+nodes_in, Cl,model="inhibitory")

This poster describes the forthcoming version 2.0 of NEST. Beta-ver-
sions are available free of charge at:

http://www.nest-initiative.org.

To compile NEST, you need a recent C++ compiler (e.g. GCC) and a
POSIX compatible operating system.

NEST runs on Linux, Solaris, Tru64, MacOS, BlueGene, and others.

Acknowledgements

We would like to thank all members of the NEST Initiative and in par-
ticular (in alphabetical order): Kittel Austvoll, Jochen Martin Eppler,
Moritz Helias, Rudiger Kupper, Wiebke Potjans, and Sven Schrader.

Partially funded by DAAD 313-PPP-N4-lk, DIP F1.2, EU Grant 15879 (FACETS), and BMBF Grant 01GQ0420
to the Bernstein Center for Computational Neuroscience Freiburg.

References

1. Gewaltig M-O, Diesmann M. NEST (Neural Simulation Tool). Scholarpedia p 11204. Online at www.schol-
arpedia.org. 2007

2. DiesmannMand GewaltigM-O.NEST: AnEnvironmentforNeural SystemsSimulations.Forschungundwiss-
chenschaftliches Rechnen, Beitrage zum Heinz-Billing-Preis 2001.Ges. fiir Wiss. Datenverarbeitung.2002

3.Eppler J M, Helias M, Muller E, Diesmann M, Gewaltig M-O. PyNEST: A convenient interface to the NEST
simulator. Frontiers in Neuroinformatics 2009 2:12. doi:10.3389/neuro.11.012.2008.

4. Gewaltig M-O, Kérner U, and Korner E. A model of surface detection and orientation tuning in primate
visual cortex. Computational Neuroscience: Trends in Research 2002. Elsevier

5.Diesmann M, Gewaltig M-O, and Aertsen A. Stable propagation of synchronous spiking in cortical neu-
ral networks. Nature.1999.

6. Morrison A, Straube S, Plesser H E, and Diesmann, M. Exact subthreshold integration with continuous
spike times in discrete time neural network simulations. 2007 Neural Computation 19(1):47-79

7.Plesser H E, Eppler J M, Morrison A, Diesmann M, Gewaltig M-O. Efficient Parallel Simulation of Large-
Scale Neuronal Networks on Clusters of Multiprocessor Computers. Lecture Notes in Computer Science
Volume 4641/2007, 672-681

8. Brunel N. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. 2000
J. Computational Neuroscience 8, 183-208

9. Matplotlib, http://matplotlib.sf.net

