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Models

Overview

A network consists of nodes and their connections. Nodes are neurons,
devices, and sub-networks. Connections are the channels along which
different types of events like spikes or currents can travel.

NEST supports parallel and distributed simulation.

On single computers, NEST distributes the network over the available
processors, each executing one part. This reduces the simulation time
considerably [6].

-NEST is a simulator for neural systems
at the level of spiking neurons.

NEST offers different models for neurons, synapses, and devices:

* Integrate and fire models with current-, and conductance-based On computer clusters, NEST dis-
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Examples of such models are:

« Models of sensory processing e.q. in the visual or auditory cortex of
mammals [4].

« Models of network activity dynamics, e.g. in laminar cortical net-
works or balanced random networks.

« Models of spike-synchronization in feed-forward networks like syn-
fire chains [5].

e Learning and plasticity in models of sensory processing.

Modeling paradigm

A simulation with NEST is like an electrophysiological experiment that
takes place inside the computer.

* You start with a system to investigate and an idea of what you want
to learn from the experiment.

* You build the neural system by arranging model neurons and con-
necting them according to your model.

¢ You can use different model neurons in one network.

* You define layers, areas, and sub-networks.

* You can use different types of synapses (e.g. STDP, facilitation, and
depression), to connect your model neurons.

* Special elements, called devices, are responsible for measurement
and stimulation.

* After the network is set up, the simulation kernel executes the mod-
el for a period of simulated time.

NEST and Python

There are two ways to use NEST:

1. As Python module (PyNEST [3]).
2. With NEST’s native simulation

language SLI.

Python is a high-level language with
a simple syntax that is easy to read

and easy to learn [3].

It provides many powerful mod-
ules for scientific computing and

visualization.

An example

We simulate a single integrate and

fire neuron that receives
a sine current as well as
excitatory and inhibito-
ry Poisson noise as in-
put. The neuron is sim-
ulated for 1000 ms.

The panel shows the
simulation script and
graph of the membrane
potential of the neuron,
using Python's Matplot-
lib [9]

Python/PyNest

SLI

work is shown.

Connecting neurons

All of NEST’s connection commands base on three primitives: a) Sim-
ple connections between two neurons, (b) divergent connections from
one neuron to a set of targets,

and (c) convergent connec-
tions from many neurons to a
common target.

CL) Simple b) Divergent C) Convergent
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#! /usr/bin/env python

Membrane potential

import nest
import nest.voltage_trace

neuron = nest.Create("iaf_neuron") g
noise = nest.Create("poisson_generator", 2)

nest.SetStatus(noise, [{"rate": 80000.0},
{"rate": 20000.0}])
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sine = nest.Create("ac_generator")
nest.SetStatus(sine, [{"amplitude™: 100.0,

"frequency": 2.0}])

LIO[O[+| | Ba| pnzoom mode

voltmeter = nest.Create("voltmeter")
nest.SetStatus(voltmeter, {"withgid": True, "withtime": True})

nest.ConvergentConnect(noise, neuron, [1.0,-1.0], 1.0)
nest.Connect(voltmeter, neuron)
nest.Connect(sine, neuron)

nest.Simulate(1000.0)
nest.voltage_trace.from_device(voltmeter)

how the random connections O
of the Brunel model [8] are
drawn with these primitives.

Connectivity for the random network
described by Brunel (2000)
# Creating synapse models

nest.CopyModel("static_synapse","excitatory" {"weight".J_ex, "delay".delay})

nest.CopyModel("static_synapse","inhibitory" {"weight":)_in, "delay":delay})

print "Connecting devices."
nest.DivergentConnect(noise,nodes_ex,model="excitatory")
nest.DivergentConnect(noise,nodes_in,model="excitatory")

nest.ConvergentConnect(range(1,N_rec+1),espikes,model="excitatory")
nest.ConvergentConnect(range(NE+1,NE+1+N_rec),ispikes,model="excitatory")

print "Connecting network."
nest.RandomConvergentConnect(nodes_ex, nodes_ex+nodes_in, CE,model="excitatory")
nest.RandomConvergentConnect(nodes_in, nodes_ex+nodes_in, Cl,model="inhibitory")

This poster describes the forthcoming version 2.0 of NEST. Beta-ver-
sions are available free of charge at:

http://www.nest-initiative.org.

To compile NEST, you need a recent C++ compiler (e.g. GCC) and a
POSIX compatible operating system.

NEST runs on Linux, Solaris, Tru64, MacOS, BlueGene, and others.
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